
Software-Defined Memory Controllers:
An Idea Whose Time Has Come

Kevin Loughlin
kevlough@umich.edu
University of Michigan

Stefan Saroiu
ssaroiu@microsoft.com

Microsoft

Alec Wolman
alecw@microsoft.com

Microsoft

Baris Kasikci
barisk@umich.edu

University of Michigan

1 INTRODUCTION
As Dennard scaling/Moore’s Law have come to an end, ar-
chitects and programmers have had to find creative ways
to improve the performance, power, and reliability of their
systems. In the worlds of compute and cache resources, the
limits of process scaling are met head-on via innovative
hardware-software co-designs. For instance, modern CPUs
and their caches expose numerous primitives to enable fine-
grained tuning according to system needs. System software
controls virtual-to-physical page mappings in the TLB, with
the ability to set sizing, access permissions, and other meta-
data about these mappings. The behavior of loads and stores
in the cache hierarchy can be customized via instructions of
different operand widths, cacheability, coherence properties,
and prefetching effects. Such flexibility enables managers of
complex hardware-software systems, such as cloud providers,
to make intelligent trade-offs among performance, power,
and reliability in compute and cache resources.

In contrast, the main memory system is yet to exploit the
same level of hardware-software co-design. Despite over a
decade of research proposals [1, 4, 6–10, 13, 14, 16, 18–23, 26–
28] demonstrating that main memory would benefit from
additional configurability, today’s cloud providers have little
control over how their servers make use of DRAM. Commod-
ity memory controllers are essentially black boxes, offering
little-to-no configurability, further complicated by imprecise
or incomplete specifications and documentation. Thus, very
little tuning of the main memory system of a server-class ma-
chine is possible in practice because (1) memory controllers
and BIOS software only expose coarse-grained settings, and
(2) the monolithic nature of memory controllers leaves little
room for parameterization per address region.
Notably, main memory is an increasingly-important bot-

tleneck for a wide range of applications [3], especially in the
age of big data. Furthermore, DRAM reliability continues to
decline with process scaling, indicating reliability-insurance
mechanisms may limit performance gains in forthcoming
DRAM [2, 12, 14]. Finally, as we move towards heteroge-
neous computing—in which a variety of processing units

share main memory—the importance of DRAM configurabil-
ity to application trade-offs will continue to rise.
Thus, we posit that now is the time for software-defined

memory controllers, particularly in multi-tenant environ-
ments such as the cloud. In our vision for a software-defined
memory controller, system software (e.g., a hypervisor) could
dynamically fine-tune controller settings and parameters ac-
cording to the needs of its various applications/guests.
Inspired by prior work in hardware optimizations to the

main memory system, we briefly describe key limitations
in today’s memory controllers and how a cloud provider
would benefit from additional configurability in these areas
(among many others). Our ultimate goal is to encourage
the academic and industry research communities to further
pursue innovation in software-defined memory controllers.

2 LET’S ADDRESS ADDRESSING
A key form of memory controller configurability would be
fine-grained control of physical address to DDR logical ad-
dress mappings. Such control would provide a crucial build-
ing block for configuring arbitrary memory parameters on a
per-DRAM-region basis (e.g., DRAM page/row policies, DDR
timings, refresh rates, etc.).
Each physical address in the system maps to exactly one

DDR logical address (i.e., a hierarchical address identifying
a location in DRAM via a specific channel, module, rank,
bank, row, and column). The parallel in the CPU realm is a
virtual-to-physical address mapping, which system software
typically controls at page-sized granularity. Given control
over virtual-to-physical mappings, a cloud provider can eas-
ily reason about and configure properties of individual pages.

However, unlike software-defined virtual-to-physical map-
pings, physical-to-DDR logical mappings are determined via
BIOS parameters. Typically, DDR logical addressing is only
configurable in terms of a coarse-grained trade-off between
bank-level parallelism and row buffer locality [5], even if
selectable at runtime [8]. To exploit bank-level parallelism,
consecutive cache lines can be interleaved (i.e., spread) across
different banks of DRAM, as different banks can be accessed



in parallel to increase throughput. To exploit row buffer lo-
cality, consecutive cache lines can instead map to the same
row of DRAM, as accessing the same row (akin to a cache
hit) is faster than accessing another row in the same bank.

Intuitively, different workloads can be limited by different
mappings; optimizing for bank-level parallelism can decrease
row buffer hits (thereby increasing latency), while optimiz-
ing for row buffer hits can decrease bank-level parallelism
(decreasing bandwidth). Despite these limits, the mappings
in today’s servers are largely “one size fits all.” For example,
with default interleaving enabled on an Intel Skylake server
with 192 banks/socket (1 GB per bank), we find that a 2 MB
huge page is interleaved across every bank in a single socket.
Such pervasively-applied interleaving can create perfor-

mance and security problems between workloads co-located
on the same bank(s). For performance, workloads that would
otherwise experience high row buffer locality see hit rates
decline due to row buffer contention with co-located appli-
cations. For security, inter-mixing different trust domains
on the same bank can lead to inter-domain Rowhammer bit
flips [11] and timing side channels [24].
To combat these problems, a software-defined memory

controller could offer “middle grounds” between pervasive
system interleaving and optimal row buffer locality, depend-
ing on the server’s software stack. For example, a hypervisor—
whose DRAM footprint arguably benefits more from isola-
tion than bank-level parallelism—could be limited to an ex-
clusive set of banks and thus relatively-isolated from its VMs.
Workloads that have inherently-low row buffer hit rates
could be similarly isolated to avoid row buffer contention.
One can imagine multiple implementations of such a de-

sign, including a memory controller-based address transla-
tion unit (akin to TLBs for DRAM caches [17]), or simply
additional per-region configuration registers to support finer-
grained translation settings (e.g., per DRAM bank group).
We encourage additional proposals, designs, and evaluations.

3 GETTING META ABOUT OUR DATA
Today’s DDR4 servers include 64 bits of metadata for each
512-bit cache line. These bits are used to implement a line’s
error correction code (ECC) and are not currently exposed to
system software. However, as prior work [19] has shown, ap-
plications can benefit from dynamically re-purposing these
bits for extra storage, in exchange for decreased ECC protec-
tion where acceptable (e.g., fault-tolerant applications).
Especially with DDR5 doubling the amount of metadata

per line (i.e., to 128 bits), we propose that the level of meta-
data configurability should be even broader than re-using
ECC for extra storage: system software should configure the
use of the bits on a per-application basis. In doing so, soft-
ware can make efficient use of the sizable “metadata” space

according to its own needs (e.g., increasing storage capacity
as previously proposed, tracking access count, and defining
and enforcing security domains, among arbitrary uses).

4 THE LATENT LATENCY PROBLEM
Over the past decade, there have been significant improve-
ments in the capacity and bandwidths of servers’ memory
systems. However, latency has essentially remained flat [3].

The aforementioned (§2) fine-grained control of DDR log-
ical addressing offers a simple avenue for improving DRAM
latency. As a basic example, workload-friendly addressing
could provide decreased latency via better row buffer locality
and/or bank-level parallelism.

More broadly, given fine-grained address mappings, cloud
providers could tune each region’s performance settings
according to system needs. For instance, data with a lifetime
shorter than a DRAM refresh interval (e.g., 64 or 32 ms)
need not be refreshed to preserve its value, avoiding refresh-
induced delays of demand reads. Similarly, prior work [15]
shows that the DRAM write scheduling policy can be tuned
to reduce write-caused interference in the performance of
demand reads, wherein a read must be delayed due to the
data bus processing write(s).

Despite these opportunities, reducing DRAM latency will
require further cooperation fromDRAMvendors. A software-
definedmemory controller alone cannot enablemany promis-
ing ideas, such as tiered-latency DRAM [16], relaxed DDR
timing parameters [6, 26], in-DRAM caching [25], and se-
lective data refresh [1, 4]. Nonetheless, we expect such a
memory controller to inspire DRAM vendors to expose addi-
tional internal knobs to software-level control.

5 LOOKING AHEAD
The systems and architecture communities are increasingly
turning to hardware-software co-designs to efficiently, flexi-
bly, and scalably solve problems in a post-Moore’s Lawworld.
Software-defined memory controllers would at long last in-
troduce this paradigm into main memory management, en-
abling cloud providers to better control the performance,
power, and reliability of their costly DRAM. It is our hope
that the pursuit of software-defined memory controllers will
encourage increased collaboration between cloud providers
and memory controller vendors, in order to provide the fea-
ture set most useful for customer needs. Furthermore, we
hope that the observed benefits of software-defined memory
controllers will spur additional collaboration with DRAM
vendors to achieve even greater gains via new levels of in-
DRAM configurability.



REFERENCES
[1] Ishwar Bhati, Zeshan Chishti, Shih-Lien Lu, and Bruce Jacob. 2015.

Flexible auto-refresh: Enabling scalable and energy-efficient DRAM
refresh reductions. In ISCA.

[2] Lucian Cojocar, Kevin Loughlin, Stefan Saroiu, Baris Kasikci, and Alec
Wolman. 2021. mFIT: A Bump-in-the-Wire Tool for Plug-and-Play
Analysis of Rowhammer Susceptibility Factors. Microsoft Tech Report
(2021).

[3] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali,
and Onur Mutlu. 2019. Demystifying Complex Workload-DRAM
Interactions: An Experimental Study. In ACM SIGMETRICS.

[4] Miseon Han, Yeoul Na, Dongha Jung, Hokyoon Lee, Seon Wook Kim,
and Youngsun Han. 2018. Energy-Efficient DRAM Selective Refresh
Technique with Page Residence in a Memory Hierarchy of Hardware-
Managed TLB. IEICE Transactions on Electronics (2018).

[5] Andreas Hansson, Neha Agarwal, Aasheesh Kolli, Thomas Wenisch,
and Aniruddha N Udipi. 2014. Simulating DRAM controllers for future
system architecture exploration. In ISPASS.

[6] Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu. 2016. Charge-
Cache: Reducing DRAM latency by exploiting row access locality. In
HPCA.

[7] Marius Hillenbrand and Frank Bellosa. 2017. Putting the OS in Control
of DRAM with Mapping Aliases. In SYSTOR.

[8] Marius Hillenbrand and Frank Bellosa. 2017. Software-Defined Physi-
cal Memory: Putting the OS in Control of DRAM.

[9] Marius Hillenbrand, Mathias Gottschlag, Jens Kehne, and Frank Bel-
losa. 2017. Multiple Physical Mappings: Dynamic DRAM Channel
Sharing and Partitioning. In APSys.

[10] Uksong Kang, Hak-Soo Yu, Churoo Park, Hongzhong Zheng, John
Halbert, Kuljit Bains, S Jang, and Joo Sun Choi. 2014. Co-architecting
controllers and DRAM to enhance DRAM process scaling. In The
memory forum.

[11] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. 2014. Ar-
chitectural support for mitigating row hammering in DRAMmemories.
CAL (2014).

[12] Jeremie S Kim, Minesh Patel, A Giray Yaglikci, Hasan Hassan, Roknod-
din Azizi, Lois Orosa, and Onur Mutlu. 2020. Revisiting RowHammer:
An Experimental Analysis of Modern DRAM Devices and Mitigation
Techniques. In ISCA.

[13] Seikwon Kim, Wonsang Kwak, Changdae Kim, Daehyeon Baek, and
Jaehyuk Huh. 2020. Charge-aware DRAM refresh reduction with value
transformation. In HPCA.

[14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.
Flipping Bits in Memory without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In ISCA.

[15] Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and
Yale N Patt. 2010. DRAM-aware last-level cache writeback: Reducing
write-caused interference in memory systems. (2010).

[16] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Sub-
ramanian, and OnurMutlu. 2013. Tiered-latency DRAM: A low latency
and low cost DRAM architecture. In HPCA.

[17] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang, Jang-
woo Kim, Jinkyu Jeong, and Jae W Lee. 2015. A fully associative,
tagless DRAM cache. ACM SIGARCH CAN (2015).

[18] Kevin Loughlin, Stefan Saroiu, Alec Wolman, and Baris Kasikci. 2021.
Stop! Hammer time: rethinking our approach to rowhammer mitiga-
tions. In HotOS.

[19] Yixin Luo, Saugata Ghose, Tianshi Li, SriramGovindan, Bikash Sharma,
Bryan Kelly, Amirali Boroumand, and Onur Mutlu. 2017. Using

ECC DRAM to adaptively increase memory capacity. arXiv preprint
arXiv:1706.08870 (2017).

[20] Sangkug Lym, Heonjae Ha, Yongkee Kwon, Chun-kai Chang, Jungrae
Kim, and Matta Erez. 2018. ERUCA: Efficient DRAM resource utiliza-
tion and resource conflict avoidance for memory system parallelism.
In HPCA.

[21] Evgeny Manzhosov, Adam Hastings, Meghna Pancholi, Ryan Piersma,
Mohamed Tarek Ibn Ziad, and Simha Sethumadhavan. 2021. MUSE:
Multi-Use Error Correcting Codes. arXiv preprint arXiv:2107.09245
(2021).

[22] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mah-
mut Kandemir, and Thomas Moscibroda. 2011. Reducing memory
interference in multicore systems via application-aware memory chan-
nel partitioning. In MICRO.

[23] Aniruddha N Udipi, Naveen Muralimanohar, Niladrish Chatterjee,
Rajeev Balasubramonian, Al Davis, and Norman P Jouppi. 2010. Re-
thinking DRAM design and organization for energy-constrained multi-
cores. In ISCA.

[24] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic
Rowhammer attacks on mobile platforms. In CCS.

[25] Y. Wang, L. Orosa, X. Peng, Y. Guo, S. Ghose, M. Patel, J. S. Kim, J. G.
Luna, M. Sadrosadati, N. M. Ghiasi, and O. Mutlu. 2020. FIGARO:
Improving System Performance via Fine-Grained In-DRAM Data Re-
location and Caching. In MICRO.

[26] Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Man-
souri Ghiasi, Minesh Patel, Jeremie S Kim, Hasan Hassan, Mohammad
Sadrosadati, and Onur Mutlu. 2018. Reducing DRAM latency via
charge-level-aware look-ahead partial restoration. In MICRO.

[27] Doe Hyun Yoon, Jichuan Chang, Naveen Muralimanohar, and
Parthasarathy Ranganathan. 2012. BOOM: Enabling mobile mem-
ory based low-power server DIMMs. ACM SIGARCH CAN (2012).

[28] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. 2014. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms. In RTAS.


	1 Introduction
	2 Let's Address Addressing
	3 Getting Meta About Our Data
	4 The Latent Latency Problem
	5 Looking Ahead
	References

